1、i.定义:整式a除以整式b,可以表示成a/b的形式。
2、如果除式b中含有字母,那么称为分式(fraction)。
3、 注:a÷b=a×1/b ii.组成:在分式中a称为分式的分子,b称为分式的分母。
(资料图)
4、 iii.意义:对于任意一个分式,分母都不能为0,否则分式无意义。
5、 iv.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。
6、 注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
7、这里,分母是指除式而言。
8、而不是只就分母中某一个字母来说的。
9、也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
10、[编辑本段]第二节分式的基本性质和变形应用 v.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
11、 vi.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. vii.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式. viii.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. ix.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. x.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程.[编辑本段]第三节分式的四则运算 xi.同分母分式加减法则:分母不变,将分子相加减. xii.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算. xiii.分式的乘法法则:用分子的积作分子,分母的积作分母. xiv.分式的除法法则:把除式变为其倒数再与被除式相乘.[编辑本段]第四节分式方程 xv.分式方程的意义:分母中含有未知数的方程叫做分式方程. xvi.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
本文到此分享完毕,希望对大家有所帮助。